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Nonlinear Excitations in the Critical Region 
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The free energy transformation due to fluctuations is investigated in an exactly 
solvable model. This model accounts for the fluctuation interaction in a reduced 
manner and leads to a realistic estimation for the free energy. In particular it 
gives a nice critical exponent ~ = 5. It is shown that in spite of the monotonic 
character of the effective free energy in the critical region the properties of the 
system should be described on the basis of the (p6 model. Localized nonlinear ~ 
excitations are found to be possible with a profile rather like that known as a 
"bump" near the point of the first-order phase transition. 

KEY WORDS: Nonlinear excitations; critical region; exactly solvable model; 
fluctuations. 

INTRODUCTION 

The renormalization group method allows one not only to perform purely 
numerical calculations of critical exponents, but also to predict some 
qualitatively new effects which could not be obtained within conventional 
approaches, e.g., within the Landau theory approximation. (1 31 Among 
these are qualitative effects such as the fluctuation-induced first-order phase 
transition (see, for example, refs. 4 and 5). 

This effect manifests itself in the following process. A trial free energy 
functional corresponds to a second-order phase transition. A fluctuation 
interaction renormalizes the parameters of the free energy. This leads to 
transformations of the effective free energy ~(q~) with temperature T. 

In anisotropic systems (at some trial parameters) the curve ~-(~0) 
undergoes transformations which are typical for the first-order phase 
transition. 
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On the other hand, it is well known just from the mean field theory 
that the first-order phase transition is anticipated by nonlinear excitations 
which can be interpreted as nucleation centers in the para phase (for review 
see refs. 6 and 7). The same nucleus exists in the case of the fluctuation- 
induced first-order phase transition. (13) 

However, in any Case, the free energy is transformed due to fluctua- 
tions in the  critical region. One can expect that even in the situation when 
the fluctuations are not strong enough to change the transition order this 
manifests itself somehow. Below it will be shown that the fluctuation inter- 
action leads to localized nonlinear excitations at T > To. 

The paper is organized as follows. 
The first part presents some main relations referring to the formulation 

of an exactly solvable model of the phase transition (9-11) which is a 
generalized version of the model proposed by Schneider e t  al. (8) Use of this 
model accounting for the fluctuation interaction in a reduced manner 
allows one to calculate the free energy structure in the critical region as 
some realistic estimation. 

As previously shown by us, the model is not trivial and one can obtain 
a number of fluctuation effects predicted within the more sophisticated RG 
approach. A new result given in this part is that the factor at q)4 in the 
expansion of the effective free energy becomes zero at the critical point even 
for an isotropic system. 

In the second part an effective free energy is calculated and applied to 
the study of nonlinear excitations. Both static and kinetic excitations are 
investigated. 

1. EFFECTIVE FREE ENERGY IN THE CRITICAL REGION 

The exact free energy calculation in the critical region is a very tedious 
problem and has not been solved. However, the essential qualitative 
properties of the free energy can be obtained in approximations. One way 
is to utilize an exactly solvable model. (s-11) Let us review this briefly. 

Let us consider the Landau-Ginzburg-Wilson functional in the form 

H =  �89 ar I-(Vq))2 + F(q))] (1.1) 

where F(q)) is an arbitrary function having a representation in a series form 

if(q))= ~ U2k(q)2) k (1.2) 
k = l  
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The model becomes exactly solvable if one replaces all integrals 
dr ~02k(r) type by powers of the integral a = j" dr ~o2(r), i.e., 

f dr cp2k(r) ~ V(a/V) k [F(q9 2) ~ F(a/V)] 

of the 

(1.3) 

Now one can calculate the free energy of the system using the representation 

[ -%la l [ ] 
exp - 2 \VJJ  f _ ~  2----~ exp - 2 \VJ  + iy (x -a )  (1.4) 

The partition function of the system 

= [ DO e x p ( - H [ ~ 0 ] )  Z 
d 

~ f  Dcpdxdyexp - - ~  (q2+2iy)I~Oql2-~ [2ixy-- VF(x/V)] (1.5) q 
may be directly integrated over all ~Oq modes except the order parameter, 

Z~ f dcpdxdyexp {-  V[F(x)-xyq-yq~2--I-Vq~oln(yWq2)]} ( 1 . 6 )  

Here the substitutions x / V ~ x  and 2 iy~y  were made for convenience. 
Equation (1.6) defines the effective free energy ~-(~o), 

{v } ~(~o) = - In  f dx dy exp - ~- [F(x) - xy +y~o 2 + q~(y)] (1.7) 

The integrals over x and y values are exactly calculated in the ther- 
modynamic limit V-~ ~ using the saddle point equations 

y = Fx(x) 

q~2= x + f ( y )  
(1.8) 

where at d =  3 (9) 

f (y)  = --O~(y)/@ = x Re(y1/2); x = 1/4z~ 

1 
~/,(y) = 1 ~ [ln(q2 + Y) _ In q2 _ y/q2] = V ~R ln(q2 + Y) 

q q 

(1.9) 

and divergent terms in ~ (y )  are eliminated by means of rescaling F(0) and 
x, respectively. Substitution of the functions x=x(q~) and y=y(cp)  into 
Eq. (1.7) gives an effective free energy ~ = ~(q~). 
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The above results were obtained in previous papers3 9-n) Now we will 
study the temperature evolution of the free energy ~(~p) for an isotropic 
system. This evolution is defined by the temperature dependence of the first 
few derivatives of Y(qo) at q~ = 0. 

To calculate them, let us note that the derivative F d x )  has the 
following structure: 

G = , + p ( x )  (1.10) 

where ~--+ 0 at the critical point and p(x)  is an arbitrary function in the 
same sense as the original F(x). 

One can rewrite Eqs. (1.8) and (1.9) as a sole equation for x=x(q~), 

G = A ( @ - x )  2 (1.11) 

where A = 1/~c 2. Using Eqs. (1.10) and (1.11), one can easily prove that the 
derivative of ~(r over ~o is equal to ~oF~ [where x = x(q~) is substituted]. 
As a result one has 

d ~  1 2 d 2 ~  1 dFx(q) 2) . 
dq~==~F~(~0 ); a(~o2)2- 2 dcp2 , etc. (1.12) 

According to Eqs. (1.8), 

o2 2 = x + tcF~/2 (Fx > O) 

At q~ = 0 and r -+ 0 the value of Fx becomes zero, so 

dcP 2 ~=o ,-~o' 0 (1.13) 

This fact means that ~ = 0 really corresponds to the physical critical point. 
Direct calculation gives 

Here 

d2o ~ =(2A)1/2{1 d x ' ~ ( d ~  1/2 

dx 2F~/2 
dq)2 - ~cFx x + 2Flx/2 ~---6-* 0 

(1.14) 

and the resulting coefficient at ((])2)2 is equal to 

(Fxx [x=O ~ 0) (1.15) 

d 2~- /" do~ \ 1/2 

d(~02) 2 ~2=0 = 2A dq ) ) ~ o  0 
(1.16) 
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For the first moment this fact seems very surprising. It means that at least 
at the critical point the free energy expansion starts from the power (~02) ~ 
with k~> 3 [it may be easily proved that at Fxx Ix=0 ~ 0 the value of 
d3~/d(~o2) 3 does not become zero when (p2=0 and ~ 0 ,  so k = 3 ] .  
However, this is in good accordance with the intuitively expected fluctua- 
tion effect on the free energy. 

First of all it gives a nice critical exponent 6 = 5 (9-.1) in the model, 
which lies near the physical one (6 24.5). Moreover, it reflects the right 
qualitative tendency to lower the factor near the term q~4 in the free energy 
due to fluctuations. In anisotropic (or multicomponent) systems it may 
lead to a weakly first-order phase transition. (9'11) 

To obtain a self-consistant description of the phase transition the trial 
function F(x)  should be chosen in the form 

F(x)  = ~x + gx  2 + bx 3 + . . .  (1.17) 

where at least the b ~ 0 term is preserved. Use of Eq. (1.11) gives after 
simple transformations the following Fx(q~ 2) function: 

A 
F~(q~2) ( A _ 3 b ) 2 { ( g + 3 b q  ~2) 

- [ (g+3b~p2)2+(A-3b) (~+2gq~2+3b~o4)]~ /2}  2 (1.18) 

It can be easily proved that the properties which were manifested in 
Eqs. (1.13) and (1.16) are preserved here. The resulting expansion for the 
effective free energy is obtained after simple but cumbersome calculations: 

o~(~02) --- A2(z) q~2 + A4(z)(q02)2 + A6(z)(cp2)3 (1.19) 

where 

A z ( z ) = A [ v ( v ) - g ] / 2 r 2 ;  v ( v )=(gZ+rv ) l / 2 ;  r = A - 3 b  

Aa(T) = - A  Iv(v) - g]  [3by(z) - Ag]/2r2v(z)  

A6(T) = A { Ag[v (v )  - g ]  [3bv(v) - Ag]  - v(z)[  lZAbgv(v)  

_ A2(3bz + g2) _ 6Abg2 + 9b2(3bv _ g2)] }/6r2v3(v) 

(1.20) 

All factors near the (q)2)k powers are temperature functions. It simulates, in 
some sense, the renormalization of the free energy functional vertices in the 
RG approach. (1 3~ The main feature of the evolution obtained is the 
possibility for A4('r ) to be negative in some region near Tc [it can be 
proved that A2,6('~ ) are positive values here]. It is interesting that the 
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~((o 2) remains a monotonic function even at A4(~)< 0. This fact follows 
directly from Eq. (1.11): 

d~.~- 1 2 A 
a~o2 - ~ Fx(,p ) = ~ [ @  - x ( @ ) ]  2 > 0 (1.21) 

and may be proved for the reduced expansion (1.19) also. It means that the 
phase transition remains of second order, as it naturally should for 
isotropic systems. The effective free energy acquires only a bend, which is 
not essential for the equilibrium order parameter evolution; however, as 
will be shown in the next section, it leads to the generation of nonlinear 
excitations in the critical region. 

2. N O N L I N E A R  EXCITATIONS 

Let us use the function Y(~o 2) [instead of the trial function F(cp2)] as 
an approximate local part of the nonequilibrium free energy functional Herr: 

Herr= f dr [1(V~0)2 -'~ ~-(~02)] (2.1) 

The nonuniform order parameter distribution is given by the equation 

6Herr/fq~ = - I V  2 - w(~o)] ~/) -~- 0 (2.2) 

where w((0) = ~ / (0 .  
We restrict ourselves below to the one-dimensional case only: (o = r 

and V 2--). N2/NF 2. This restriction allows us to obtain exact solutions of 
Eq. (2.2) using standard technique: 

d2~o/& 2 = �89 = ~ (2.3) 

This equation leads to 

( ( ~ r )  2 = 2~(cp 2) + Ao (2.4) 

where Ao = const. Finally one obtains 

r = (2.5) 
0 [2~((o2) + Ao] 1/2 

The problem under consideration is reduced now to the calculation of 
the integral (2.5) for the general q)6 model. This program was fulfilled in 
refs. 6 and 7 and different types of nonlinear excitations were obtained. 
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Here a certain peculiarity exists. Namely, when A 4 < 0 in the Landau 
theory a discontinuous transition takes place. It is accompanied by a 
"bump"-type excitation in the disordered phase which leads to a finite 
value of r # 0. In our situation A4('c ) < 0 at positive temperature also. But 
A4(z)--+ 0 when z-* 0 and ~ ( q ? )  is a monotonic function at any v > 0. It 
generates an additional problem. 

Let us illustrate the situation by a simple example. If Ao=0,  the 
integral (2.5) is easily calculated in elementary functions. The substitution 
~02= l/v/transforms it to the following form: 

~,7 dr/ (2.6) 
I(Y/) = O~/0 (A2/I 2 Jr A4F ] + A6) 1/2 

The concrete formula for the resulting I0/) function is defined by the 
sign of the combination A = 4A2A6-  A~. In our case A(r )>  0 at any r > 0. 
Taking into account also that A2(z)>0 at v>0 ,  one has the following 
solution: 

~-AA(A 1/2 Isin h - t  (2A2 ~0  2 + A4~ cp(r) = l ~ 2  sinh ~ \ A '/2 / 

+ 2(2A2) 1/2 ( r -  r0) - ~ (2.7) 

where ~o(r)= ~o. The profile of q~(r) is presented in Fig. 1. It is clear that 
q~o-~O(r)oc[r-rol at r-+ro and a nonanalyticality exists at the r=ro 

t t  

0 
r v 

Fig. 1. Profile of r in the stationary position. 
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point. This result contrasts with the analogous profile for the first-order 
phase transition, where a "bump" profile has an analytical form at the 
r = ro point. (7) Nevertheless, this does not mean that the solution obtained 
is an unphysical one and indicates only that the functional Herr has a 
limited applicability region at small distances (or, which is the same, all 
integrals over momenta should be cutoff at q --, oe ). 

Let us introduce a smooth cutoff in the usual way by using the factor 
S(aq). Here S(aq ~ 0 ) ~  1 and limaq__, ~ [S(aq)(aq) m] = 0  at arbitrary rn 
(a is a lattice constant)/12) Instead of Eq. (2.1) one has now 

He~r= �89 ff dr dr' Q(r-  r') ~o(r) ~o(r') + far  ~(~o2(r)) (2.8) 

[where Qq = S(aq) q2]. The corresponding Euler equation takes the form 

f dr' Q(r - r ') q~(r') + O~/~q)(r) = 0 (2.9) 

The concrete form of the Q ( r -  r ') function should be used to solve this 
equation. Let us rewrite Eq. (2.9) in the following way: 

f dr' Q(r - r ') ~p(r') = - V  2 f dr' S(r - r ') qo(r') 

= -- f dr' S(r - r ') V~,q~(r') 

-- - c ~ / t ~ o ( r )  (2.10) 

In the zero approximation the function S ( r - r ' )  is the Dirac b-function 
S ( r - r ' )  = b ( r - r ' ) .  It is natural that the cutoff at large momenta leads to 
its slight transformation, so the difference bS(r - r ') = S(r - r') - b(r - r ') is 
a small value everywhere except for the region I r - r ' l  ~< a. Let us rewrite 
Eq. (2.10) in the form 

[V2q~(r)-d~/dq~(r) ] + f dr' bS(r-r') V2,~o(r')=O (2.11) 

and solve it in the perturbation theory frame. It is convenient to take that 
the unperturbed solution (p(r)=qoo(r) at small distances has the form 
q0o(0)-/~ IrL, where ~t = const, and utilize the relation 



f dr' 6S(r' - r) V~,,p(r~ ') 

= -- f dr' Vr, 6S(r'  - r) Vr, q~(r') 

# f dr' sign(r') d ( 6 S ( r -  r'))/dr' = - 2 #  (3S(r) (2.12) 

Thus function ~o(r) satisfies the reduced equation 

d2cp/dr 2 - 2# ~SS(r) - d~/dcp(r) = 0 (2.13) 

Fig. 2. 

To obtain the solution one can concretize further the function S(r) [using, 
for example, the form S(r)=a/n(a2+r2)].  However, in any case it is 
quite obvious that S(r) should be limited though very large at the point 
r = 0 point [while ~ ( r ) ~  oe when r ~ 0 and the difference 6S(r) increase 
at r -+0 ,  too].  On the other hand, the derivative d.~/dq~(r) is limited 
everywhere. Thus, at small distances Eq. (2.13) can be reduced to the 
simple relation d2cp/dr2= 2# ~S(r) which in turn everywhere at ]r[ ~< a but 
r ~ 0 can be solved using ~S(r)~  S(r). Finally, in this region one has 
q~(r) ,~ (l~r2/na + const). The arbitrary constant arising here should be used 
for this solution together with the trial one which obviously exists as before 
at [rl > a. The resulting structure of the ~o(r) function is shown in Fig. 2. 

l . t  

0 
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p, 

Renormalized profile of ~o(r), taking account of a cutoff at small distances. 
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The order parameter "bump" is distributed as a usual solitary excita- 
tion and has a gap only at distances which are of the order of the lattice 
constant. This solution structure should be interpreted as qualitatively 
appropriate only. It is analytical at the zero point, but its fine structure in 
the region (rl ~<a reflects only that the "order parameter language" is not 
adequate at very small distances. 

To conclude, let us consider one kinetic property of nonlinear excita- 
tions in the critical region above To, namely, the kinematics of the excita- 
tions in 2n-component systems. In this case the order parameter may be 
represented as a complex one and the solution for the Euler-Lagrange 
equation 

-- i O~o/Ot = -V2q~ + ~,~/~o (2.14) 

may be chosen in the form proposed in ref. 7, 

q0(r, t) = t/(~l) exp[i2(~2) ] (2.15) 

Here ~1 = r-Vet; ~2 --= r - v e t ;  and /)e, /)c are the velocities of "envelope" 
and "carrier," respectively. Substitution of this solution into Eq. (2.14) 
shows that for the agreement between the equations for the real and 
imaginary parts it is necessary to satisfy the relation 2(42) = ver So the 
solution has the form 

(p(r, t) -= q(r - Vet ) e xp[  ive(r - vct) /2  ] (2.16) 

The equation for the modulus t /(~) in this case takes the form 

r/r162 = [27 + w(r/)] q (2.17) 

where 7 = I ) e ( 1 )  c - -  Ve/2)/4. It is directly seen that Eq. (2.17) differs from the 
analogous one in the static case [see Eq. (2.2)] by the presence of the 27 
term only. This term effectively renormalizes the A2 factor in the w(t/) 
expansion over t/2 powers: 

A2,~fr = 7 + A2 (2.18) 

The difference between vc and re~2 allows one to make the A2,eff value quite 
arbitrary. In particular, it may become zero at vc <<, r e ~ 2 - 4 A 2 / v e  even at 
A2 ~> 0 (as it was above). So, accounting for A 4 ~< 0, one obtains the o~r(t/) 
function with all properties which are distinctive features for the first-order 
phase transitions. 
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0 

j 
Fig. 3. Profile of moving q~(r). 

This fact makes possible the formation in the critical region of traveling 
nonlinear excitations with a standard profile. Their typical form is shown 
in Fig. 3. The analyticality of q(r) at r = 0 releases one from the need for 
a momentum cutoff which was necessary in the static case. 

Summarizing, one can conclude that the fluctuation interaction leads 
to free energy transformations which are accompanied by localized order 
parameter excitations. In application to the Landau theory one can inter- 
pret the "bumps" as the critical nucleus at a discontinuous transition. It 
really takes place in the fluctuation region for anisotropic systems. (1~) 

However, a nonlinear excitation should satisfy some conditions (14) 
to be a real critical nucleus. It should be a special (separatrix) solution 
for the Euler equation and its maximum value should coincide with the 
equilibrium order parameter. This is not fulfilled here for a second-order 
transition. The solutions obtained do not satisfy the above conditions and 
they cannot be the critical nucleus. They are very large fluctuations only, 
but their presence should be pronounced in the thermodynamics. 
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